

DE-010-001407 Seat No. _____

B. B. A. (Sem. IV) (CBCS) Examination

April / May - 2015

Business Statistics: Paper-II

				aculty (
Time	e : 2	1/2 H	ours]				[Total Marks : 70				
Inst	ructi	ions	: (i) (ii) (iii)	sheet.	nswer of	all o	cions. questions in main answer indicate marks.				
1				wing que	stions se	lecti	ng proper option 20				
	(1)	Ame	erican economist Leontief introduced								
		(A)	Metho	d of inpu	t-out ana	lysis	3				
		(B)	Metho	d of least	square						
		(C)	Metho	d of regre	ession an	alysi	is				
		(D)	Metho	d of expo	nential s	moot	thing				
	(2)		_	series Tr ctuations.		Cycl	lical fluctuations are				
		(A)	Long t	erm		(B)	Short term				
		(C)	Minim	um		(D)	None of these				
	(3)		a time- tuations		flu	ctua	ations are short term				
		(A)	Cyclica	al		(B)	Seasonal				
		(C)	Infinit	e		(D)	None of these				

	Teci	nnology matrix is always	3	.
	(A)	Skew symmetric matrix		
	(B)	Square matrix		
	(C)	Idempotent matrix		
	(D)	None of these		
(5)		chart is used for th	ie cor	ntrol of variability in the
	prod	luction process.		
	(A)	C	(B)	nP
	(C)	R	(D)	P
(6)	In .	\overline{X} chart UCL=40.6 and	$\overline{\overline{X}} = 3$	0.6 so LCL =
	(A)	0	(B)	10
	(C)	20.6	(D)	71.2
(7)		chart which involves thed chart.	e no.	of defects per unit, is
	(A)	$ar{X}$	(B)	P
	(A) (C)		(B) (D)	P None of these
(8)	(C)	nP	(D)	None of these
(8)	(C)	nP value of D_3 in R chart	(D)	None of these end upon
(8)	(C) The (A)	nP value of D_3 in R chart m	(D) depe	None of these end upon
(8)	(C) The (A)	nP value of D_3 in R chart	(D)	None of these end upon
(8)	(C) The (A) (C)	nP value of D_3 in R chart m	(D) depe	None of these end upon p None of these
	(C) The (A) (C)	nP value of D_3 in R chart m m and n ection of null hypothesis	(D) depe	None of these end upon p None of these

(10)	In la	arge sample test sample	size	
	(A)	$n \ge 30$	(B)	<i>n</i> > 30
	(C)	<i>n</i> < 30	(D)	None of these
(11)	Degr	ree of freedom for $r \times c$	ontin	igency table is
	(A)	rc	(B)	(r-1)c
	(C)	(r-1)(c-1)	(D)	(r-1)c $r(c-1)$
(19)	То +	est of goodness of fit		test is used
(12)	(A)	est of goodness of fit	(B)	
	(C)			None of these
	(0)	L	(1)	Trone of these
(13)		test is used in analy	sis o	f variance.
	(A)	F	(B)	Z
	(C)	t	(D)	None of these
(14)	If E	$=\frac{s_1^2}{s_2^2}$ then s_2^2 s_1^2	2	
(11)	11 1	$-\frac{1}{s_2}$ then s_2 $-\frac{1}{s_1}$		
	(A)	<	(B)	>
	(C)		(D)	≤
(15)		comparing the means of test is used.	two	indep. small samples
	(A)	F	(B)	t
	(C)	Z	(D)	χ^2

(16)		is called C.F. for AN	IOVA	۸.
	(A)	$\frac{T}{N^2}$	(B)	$\frac{T^2}{N}$
	(C)	$\left(\frac{T}{N}\right)^2$	(D)	None of these
(17)	Gan	ne theory is concerned w	ith	
	(A)	predicting the results		
	(B)	only mixed strategy		
	(C)	the choice of an optima	l str	ategy
	(D)	None of these		
(18)		rategy that is best regards called	rdless	s of what rival players
	(A)	First mover advantage		
	(B)	Tit-for-tat		
	(C)	Dominant strategy		
	(D)	None of these		
(19)	A m	aixed strategy game can	be s	olved by
	(A)	LPP method	(B)	Algebraic method
	(C)	Graphical method	(D)	None of these

(20) In a two person game, both the players must have an

(C) 90% correct (D) None of these

2 Explain: P and nP-charts.

10

OR

The following table gives mean and range of 10 samples 10 each of size 5. Draw \overline{X} and R charts and state your conclusion:

Sample No.	1	2	3	4	5	6	7	8	9	10
\bar{X}	52	50	50	51	47	52	49	54	51	54
R	6	7	6	5	6	9	8	7	7	4

3 Explain: Exponential Smoothing.

10

OR

3 Find trend by fitting equation of second degree parabola 10 from given data of time series:

<i>x</i> :	1987	1992	1997	2002	2007
<i>y</i> :	11	12	14	18	16

4 (a) Explain: Level of significance, Null hypothesis.

5

(b) Test the significance difference between two sample means from the following data:

	Size	Mean	Variance
Sample – I	150	1400	14400
Sample – II	200	1200	6400

OR

4 Fit a Poisson distribution to the following data and test 10 the goodness of fit:

<i>x</i> :	0	1	2	3	4	5
f:	49	41	16	10	3	1

5 (a) Short note: t test.

5

(b) Two samples are drawn from two normal populations. **5**Test the significance of equality of two variances:

	Sample-I:	15	11	21	22	18	17	13	19	20	14		
I	Sample-II:	20	26	39	35	28	27	31	21	34	36	23	30

OR

5 ANOVA for the following data:

10

6 Explain:

10

- (1) Dominance rule
- (2) $2 \times n$ and $m \times 2$ game.

OR

6 Determine the strategies for player-A and player-B and the value of game by using algebraic method:

		Player B				
		I	II	III	IV	
	I	3	5	4	2	
TD1 4	II III	5	6	4 2	4	
Player A	III	2	1	4	0	
	IV	3	3	5	2	